1. Ertel R B, Reed J H. Angle and time of arrival statistics for circular and elliptical scattering models. IEEE Journal on Selected Areas in Communications, 1999, 17(11): 1829-1840
2. Lotter M P, Rooyen P V. Modeling spatial aspects of cellular CDMA/SDMA system. IEEE Communication Letters, 1999, 3(5): 128-131
3. Jian L, Tan S Y. Geometrically based statistical channel models for outdoor and indoor propagation environments. IEEE Transactions on Vehicular Technology, 2007, 56(6): 3587-3593
4. Olenko A Y, Wong K T, Ng E H. Analytically derived TOA-DOA statistics of uplink/downlink wireless multi-paths arisen from scatterers on an hollow-disc around the mobile. IEEE Antennas and Wireless Propagation Letters, 2003, 2(5): 345-348
5. Liberti J C, Rappaport T S. A geometrically based model for line-of-sight multi-path radio channels. Proceedings of the 46th Vehicular Technology Conference (VTC-Spring’96): Vol 2, Apr 28-Mar 1, 1996,Atlanta, GA, USA. Piscataway, NJ, USA: IEEE, 1996: 844-848
6. Olenko A Y, Wong K T, Abdulla M. Analytically derived TOA-DOA distributions of uplink/downlink wireless cellular multi-paths arisen from scatterers with an inverted-parabolic spatial distribution around the mobile. IEEE Signal Processing Letters, 2005, 12(7): 516-519
7. Pedersen K I, Mogensen P E, Fleury B H. A stochastic model of the temporal and azimuthal dispersion seen at the base station in outdoor propagation environments. IEEE Transactions on Vehicular Technology, 2000, 49(2): 437-447
8. Kavak A, Yang W, Xu G, et al. Characteristics of vector propagation channels in dynamic mobile scenarios. IEEE Transactions on Antennas Propagation, 2001, 49(12): 1695-1702
9. Janaswamy R. Angle and time of arrival statistics for the Gaussian scatter density model. IEEE Transactions on Wireless Communications, 2002, 1(3): 488-497
10. Kong S H. TOA and AOD statistics for down link Gaussian scatterer distribution model. IEEE Transactions on Wireless Communications, 2009, 8(5): 2609-2617
11. Khan N M, Simsim M T, Ramer R. Modeling spatial aspects of mobile channel for macrocells using Gaussian scattering distribution. Proceedings of the 3th International Symposium on Wireless Communication Systems (ISWCS’06), Sep 6-8, Sydney, Australia. Piscataway, NJ, USA: IEEE, 2006: 616-620
12. Intarapanich A, Kafle P L, Davies R J, et al. Geometrically based broadband MIMO model with tap-gain correlation. IEEE Transactions on Vehicular Technology, 2007, 56(6): 3631-3641
13. Mahmoud S S, Hussain Z M, Shea P O. Geometrical model for mobile radio channel with hyperbolically distribution scatterers. Proceedings of the International Conference on Communication Systems (ICCS’02), Nov 25-28, Singapore. Piscataway, NJ, USA: IEEE, 2002: 17-20
14. Petrus P, Reed J H, Rappaport T S. Geometrical based statistical macocell channel model for mobile environments. IEEE Transactions on Communications, 2002, 50(3): 495-502
15. Couto E M, Cole R S. Statistical analysis of angle-of-arrival on 4.1 km line-of-sight laser link at 0.83 μm across central London. Electronics Letters, 1996, 32(3): 237-238
16. Eggers P C F. Generation of base station DOA distribution by Jacobi transformation of scattering areas. Electronics Letters, 1998, 34(1): 24-26 |